

Effects of ground cover management on ground beetle populations in apple orchards in the UK

Jean Fitzgerald

Background

- Cost effective control of pests and pathogens
- Reduction of inputs
- Use of biological and other control strategies
 - habitat manipulation to increase functional biodiversity
 - refuges

Habitat manipulation to enhance beneficials

em

Why are we interested in ground beetles?

- Potential predators of pests with ground inhabiting life-stage
 - Dasineura mali
 - Cydia pomonella
 - Otiorhynchus sulcatus
 - Thrips spp.

Carabids feeding on vine weevilfield study

Species	eggs	larvae	adults
Bembidion lampros	\checkmark		
Calathus fuscipes			\checkmark
Carabus violaceus			\checkmark
Harpalus rufipes		\checkmark	\checkmark
Notiophilus biguttatus	\checkmark	\checkmark	
Pterostichus madidus		\checkmark	\checkmark

Carabids feeding on apple leaf midge-lab study

Species	Mean number consumed in 12 hours
Pterosticus madidus	3
Pterosticus melanarius	2
Carabus violaceus	0.5
Harpalus rufipes	6

9% of *P. madidus* collected from the field had fed on apple leaf midge

Aim of experiment

- To determine the impact of orchard floor management on ground beetle abundance
 - effect of vegetation structure
 - effect of other soil treatments
 - range of influence of treatment
- To assess effects on pest populations

Ground cover management

Centaurea nigra

Organic mulch

Bare soil

Trifolium pratense

Ground cover management

- Organic orchard
- Pitfall traps placed in treated tree rows and in grass alleys
- Pest damage assessed on trees
- Fruit damage assessed at harvest

Most abundant carabid species in traps

emr

	Species	Total caught (3 trapping occasions in each of 3 years)
1	Pterostichus melanarius	912
2	Nebria brevicollis	857
3	Pterostichus madidus	452
4	Calathus fuscipes	432
5	Harpalus rufipes	274
6	Harpalus aeneus	186
7	Carabus violaceus	185
8	Bembidion lampros	92
9	Loricera pilicornis	78
10	Notiophilus biguttatus	27

Habitats in which species caught

N. brevicollis

P. madidus

emr

east malling research

C. fuscipes

Damage on trees

	% damage on angular scale			
	Apple leaf midge	aphids	leafminer	
Knapweed	10.7	1.23	12.4	
Clover	32.7	1.58	29.2	
Mulch	50.5	0.64	51.3	
Bare soil	41.5	2.09	39.1	
Р	<0.001	0.48	<0.001	
lsd	11.7	2.0	10.7	

Fruit damage at harvest

	% damage on angular scale			
	Aphid	Tortrix	Other caterpillar	
Knapweed	8.2	6.2	10	
Clover	4.0	12.0	10.2	
Mulch	3.2	16.6	6.7	
Bare soil	5.8	14.6	10.2	
Р	0.26	0.05	0.6	
lsd	5.56	7.54	6.49	

Conclusions

- Habitat manipulation affected the numbers and species of ground beetle trapped
- Some evidence that pest damage was lower where ground beetle populations were enhanced
- Effect of different habitats was seen only locally

Thank you for your attention

